Nuprl Lemma : preinit1R_feasible 11,40

i:Id, X:Type, p:FinProbSpace, x0:XP:(X).
Normal(X R-Feasible(preinit1R{x:ut2, a:ut2}(iXpx0P)) 
latex


DefinitionsFalse, A  B, Rinit-v(x1), Reffect-f(x1), Rinit-discrete(A), Rinit-x(x1), Rinit?(x1), Reffect-discrete(A), eq_atom$n(x;y), Atom2Deq, Rsends-T(x1), Reffect-T(x1), Rsends-dt(x1), Rpre-a(x1), Rpre-ds(x1), Rpre?(x1), Rsends-ds(x1), Rbframe-L(x1), Rbframe-k(x1), Rbframe?(x1), Rsframe-L(x1), Rsends-knd(x1), Rsends-g(x1), Rsframe-tag(x1), Rsends-l(x1), Rsframe-lnk(x1), Rsframe?(x1), Rsends?(x1), Rrframe-L(x1), Reffect-ds(x1), Rrframe-x(x1), Rrframe?(x1), Raframe-L(x1), Raframe-k(x1), Raframe?(x1), Rframe-L(x1), Reffect-knd(x1), Reffect-x(x1), Rframe-x(x1), Rframe?(x1), Reffect?(x1), t.2, t.1, (i = j), p  q, R-interface-compat(A;B), R-discrete_compat(A;B), R-frame-compat(A;B), R-base-domain(R), p = q, Rda(R), Rds(R), R-loc(R), a = b, True, Rnone?(x1), Rplus-right(x1), Rplus-left(x1), P & Q, Rplus?(x1), ff, i <z j, b, tl(l), i j, nth_tl(n;as), hd(l), , {T}, SQType(T), A, Y, l[i], ||as||, tt, eqof(d), if b then t else f fi , Top, IdDeq, xt(x), t  T, xLP(x), A || B, (x,yL.  P(x;y)), Realizer, s.x, "$x", preinit1R{$x:ut2, $a:ut2}(iXpx0P), R-Feasible(R), P  Q, FinProbSpace, x:AB(x), A c B, , x:AB(x), P  Q, Unit, (x  l), P  Q, i  j < k, Dec(P), {i..j}, x(s), State(ds), Normal(T), , S  T,
Lemmasqle wf, l all wf2, int inc rationals, select wf, length wf1, qsum wf, rationals wf, normal-type wf, finite-prob-space wf, decl-type wf, decl-state wf, fpf wf, IdLnk wf, unit wf, l member wf, R-Feasible wf, normal-ds-single, not functionality wrt iff, assert of bnot, eqff to assert, not wf, bnot wf, locl wf, top wf, Kind-deq wf, Knd wf, fpf-empty-compatible-right, fpf-compatible-self, assert-eq-id, eqtt to assert, assert wf, iff transitivity, bool wf, eq id wf, int seg wf, decidable int equal, Rinit wf, subtype rel self, eqof eq btrue, id-deq wf, fpf-cap-single, Id wf, fpf-single wf, Rpre wf, R-feasible-Rlist

origin